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The chemically interesting potential energy surfaces (PES) are considered on 
which the conditions underlying application of structural stability principle 
and Morse inequalities are violated. The possibility of treatment of singular 
branching points on a PES slope in terms of intrinsic reaction curves (IRC) 
is discussed. 
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Recently, the problems of structure of multidimensional potential energy surfaces 
(PES), 

U = U ( q ' ) ;  i = 0 , 1 , . . . , N - 1  (1) 

(qi are cartesian coordinates 1) are discussed using terminology and concepts of 
differential geometry and topology. In particular, the structural stability principle 
was used [6-8] to formulate the rule stating that, in the case N = 2, the gradient 
curve linking a pair of saddle points (having the signature of Hessian matrix 
cr = 0) should necessarily pass through a stationary point, either a maximum 
( o - = - 2 )  or a minimum (o-= 2). The idea of utilizing the Morse inequalities, 

The whole number  of  variables is N + 6. We consider only internal coordinates for brevity. They 
can be approximately selecfed to be cartesian ones which means  that the metric is assumed to be 
euclidean in the vicinity of  the curves under  investigation [1], either intrinsic reaction curves [2] or 
opt imum ascent path [3, 4] ones. This is the condition allowing to construct the reaction path 
hamiltonian [1, 5] along these curves. Thereby interactions between q~ and overall rotations are 
neglected 
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restricting available combinations of critical points with different signatures was 
also announced [6, 9-11]. 

There exists a set of necessary conditions [12, 13] which restrict the manifold of 
functions displaying the aforementioned topological properties. Any of them 
being violated in a real chemical system discards the application of purely 
topological reasoning. In the present note only one, probably the most remarkable 
of these limitations, is considered. It implies nonsingularity of Hessian matrix at 
all the critical points: 

02U OU  etll l 0q'=0 
We demonstrate a PES illustrating that condition (2) can be violated in the cases 
of chemical interest. The respective topographical scheme is shown in Fig. la. 
The valley descending from saddle point X~ bifurcates at point O. A pair. of 
arising at this point new valleys further descend to minima W1 and W2. The 
latter two are connected via saddle point X2. 

The branch point O is an umbilic point [14] where 

O~U 0 U 
det ~ =0; Oq"=O" (3) 
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Fig. 1. a The scheme of a, PES with an umbilic point (shown as a hexagon). Symbols M, X and W 
denote maxima, saddles and minima, respectively; v and r denote valleys and ridges, b Splitting of 
an umbilic point by a small perturbation. Shown are level lines of region I indicated in a. c Level 
lines of region II indicated in a 
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So the energy profile along the pathway XI OX2 decreases steadily and has a zero 
slope at inflection point O. Thus the above mentioned prohibition rule [6-8], 
forbidding the topographical situations with "adjacent" saddle points, definitely 
fails to be valid in this case. 

Such a topographical situation as represented by Fig. la  takes place in Diels-Alder 
reaction [15]. It was also registered in calculations of several intramolecular 
rearrangements [16]. 

It is worth to comment that the exactly degenerate case (3) can be met only in 
highly symmetrical systems. Symmetry perturbations will split the umbilic point 
into four regular critical points, namely, minimum W, maximum M, pair of 
saddles X and X',  as shown in Fig. lb. By that the conditions allowing application 
of structural stability principle and Morse inequalities formally regenerate. 
However, the so arising new critical points are vague, chemically uninteresting 
and their appearance cannot be anticipated. Such an obscurely displayed topo- 
graphic situation in practive behaves as an umbilic. 

Our other comment concerns the methodics of drawing one-dimensional topo- 
graphical PES schemes. Originally, the curves of optimum ascent path (OAP) 
were used for this purpose [15]. The PES schemes were alternatively formulated 
in terms of gradient lines, namely, intrinsic reaction curves (IRC) and separatrices 
[6-8, 17]. Both approaches coincide in the vicinity of critical points (0 U/Oq ~ = O) 
where the IRC and OAP curves coincide. However, basing on OAPs, one can 
extend the schematical one-dimensional description of critical point regions onto 
the branching (or bifurcation) points of PES valleys and ridges which, being not 
critical (0 U / O q ~  0), still constitute important elements of PES structure. The 
question arises whether it is possible to repeat similar extention with IRCs. 

This problem has been considered recently [18] for a special case of triple 
branching points with Cs symmetry. We present below a qualitative discussion 
of a general case. From the differential equation defining IRC as a gradient line 
it follows that its noncritical singularity should be located at a point where 

O~U OU 
det ~ =0;  ~q~r i , j = 0 , 1  . . . .  , N - 1 .  (4) 

On the other hand, an elementary topographical reasoning indicates that a zero 
frequency mode in the reaction path Hamiltonian [1, 5] must appear at points 
where IRC bifurcate. Therefore 

det ~ =0,  a, f l = l , . . . , N - 1 .  (5) 

Here coordinates q~, q~ are orthogonal to IRC whereas the q0 direction is tangent 
to IRC. Let us choose q~ in such a manner to diagonalize matrix (5) and assume 
that q~ corresponds to its zero eigenvalue. We suppose also that matrix (4) has 
a single zero eigenvalue. Then from the requirement of consistency of (4) and 
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(5) we conclude 

02U 
Oq o Oq~m - O. (6) 

We restrict the following consideration by the case N = 2. Let a cartesian coordin- 
ate frame be centered at our  branching point  with x and y axes tangent to the 
gradient and constant level curves, respectively. Introducing the notation 0 U/Ox = 
Ux, 0 U/Oy = Uy, 02 U/Ox Oy = Uxy etc. we can present the IRC branching condi- 
tions (5), (6) at several point  T in the form 

Uyy = 0; Uxr = 0 (at point T). (7) 

In terms of OAPs the situation of  triple valley branching is described by a 
combination of triple points 0 '  and ~0 [15]. At a 0 '  point a valley OAP converts 
into a pair  of  valley OAPs and a "rock curve" between them, on which the 
gradient norm goes through a maximum when following along a constant energy 
level. At a ~b point this rock curve bifurcates into a pair of  rocks and a ridge 
OAP between them. The condition that an OAP curve bifurcates at point 0 or 
~0' is 

Uyy( Uyy- Uxx)-q- UxUxyy=O'~ Uxy=O (at points 0, ~'). (8) 

Here the first relation is the main condition of  OAP branching [15] while the 
second one [3] states that points ~b, ~0' lie on a gradient extremal, either an OAP, 
or a rock curve. 

Because generally Uxyy ~ O, the points T and 0 or ~ '  do not coincide. Since 
Uyy > 0 at 0 '  and Uyy < 0 at ~ so we conclude that the triple IRC point T with 
Uyy = 0 is located between them as shown in Fig. 2. However, as the second 
relations of  (7) and (8) are the same, we conclude that T lies on the IRC and 
on a gradient extremal simultaneously. It follows then [4] that the curvature of  
both curves vanish at T and they both have the x axis as a common tangent 

�9 direction. On the other hand, if we consider ~ and ~' ,  then again both IRC and 
a gradient extremal pass through them and have a common tangent direction, as 
a consequence of a condition [15] that Uxxr = 0 at a triple point. In a special 
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Fig. 2. The scheme of valley branching at triple points 0', T, q,. Solid 
and broken lines represent OAPs and rocks respectively. Arrow lines 
represent IRCs 
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case of  Cs symmetry [ 18] the curvature of  the central line in Fig. 2 exactly vanishes 
by the symmetry argument. So this line can be equally well considered either as 
an IRC or as a gradient extremal. In a general case it is still so at three branching 
points tp, ~', T. Therefore between these paints the curvature is expected to be 
small and local Cs symmetry is approximately obeyed. 

The analysis proves to be different if we consider more usual double branching 
points, where PES valleys or ridges arise or dissipate. The IRCs, contrary to 
OAPs, cannot arise or dissipate on a PES slope ( a U / a q  i ~ 0 ) .  So they seem to 
be inefficient as a tool  o f  treatment of  double points. The disadvantage of  IRCs 
in studying bifurcations is due to the fact that their local properties are not well 
defined. 

Finally, the conditions (7) and (8) do not necessarily mean that an IRC or an 
OAP bifurcate. They are, for instance, true for a continuum of  gradient curves 
covering a plane slope of  a PES. In this highly degenerate case indeed Uxyy = 0 
so that conditions (7) and (8) become the same. Hence this family o f  IRC curves 
may be equally well considered as a family of  OAP curves, so a concept of  a 
single isolated IRC or OAP curve makes no sense. 

The similar comparison of  branching conditions for IRC and gradient extremal 
curves for N > 2, being more complicated, is not considered here. 
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